
Secure Remote Sensor
Simulator

M.S. Final Exam

Ram Rohit Gannavarapu

Agenda
• Introduction & Motivation

• Background and Related work

• System Design

• Hardware Design

• Software Design

• Securing Cloud and external communication

• Conclusion and Future work

2

Introduction

MD5.

SHA-1,

SHA-2,

etc.

• An estimated 2,811,185 people were involved in motor vehicle
accidents in the United States in 2018 [1].

• The litigation and settlements involving these crashes can reach
millions of dollars

• Heavy Vehicle Event Data Recorders (HVEDR) can record event
data related to diagnostic faults, hard or quick stops, and the
vehicle's last or most recent stop.

• The data from HVEDRs help investigators determine important
details about the crash

Image source: [J. Daily, et al.] “Extracting Event Data from Memory Chips within a Detroit Diesel DDEC V,”

3

[1]

Motivation

MD5.

SHA-1,

SHA-2,

etc.

• Accessing the smart sensor device over the cloud enabling investigators to operate these
devices remotely

– Secure IoT communication.

• Software Defined Truck

• The Forensic tools have very minimal, or no security measures implemented.

• Despite growing role of embedded systems, their security capabilities remain weak. This
thesis implements a way to increase security posture of embedded IoT devices.

4

Agenda
• Introduction & Motivation

• Background and Related work

• System Design

• Hardware Design

• Software Design

• Securing Cloud and external communication

• Conclusion and Future work

5

Background and Related work

MD5.

SHA-1,

SHA-2,

etc.

Extracting data from HVEDRs

Extracting directly from vehicle diagnostic port

• OEM specific tools

• RP1210 is used for accessing diagnostic interfaces in
the truck environment.

• Only possible when electricals of the vehicles are not
compromised

6

Background and Related work

MD5.

SHA-1,

SHA-2,

etc.

Extracting data from HVEDRs

Surrogate vehicle method

• Locate a virtually identical sister truck

• Remove the ECM from the severed truck and replace it in the
sister truck

• Drawbacks
– Expensive (Rental/Leasing)
– Hard to Find

Surrogate truck

7

Background and Related work

MD5.

SHA-1,

SHA-2,

etc.

Extracting data from HVEDRs

Truck in a Box system

• Simulates different passive sensors using
Potentiometers

• Compatible only for specific make/model

Image source: [4]

8

Background and Related work

MD5.

SHA-1,

SHA-2,

etc.

SSS and SSS2

Smart Sensor
Simulator

Jose Luis Córcega
University of Tulsa

2014 2017 2021

Smart Sensor
Simulator 2

Dr. Jeremy Daily
Synercon Technologies

Mini-Smart Sensor
Simulator 3

10

Common Sensors found in a HV

• Engine side harness
– Crankshaft position sensor

– Timing reference sensor

– Ambient Air Temperature Sensor

• Vehicle side harness
– Accelerator Pedal Position

– Coolant level sensor

– Vehicle speed sensor

• They can be categorized into
– Two wire Sensors

– Three wire sensors

– Pulse Width Modulated signals

Image source: Bourns - Commercial Vehicle Sensors

11

https://www.bourns.com/products/automotive/commercial-vehicle-sensors

Two Wire Sensors

MD5.

SHA-1,

SHA-2,

etc.

Resistive Sensors

Image Source: 2 Wire RTD Temperature Sensor, RTD, Resistance Temperature Detector (RTD) (thermometricscorp.com)

• Read internally by the ECU through a Wheatstone
bridge or a voltage divider.

• Varying the resistance changes the sensor value.

• Some two sensors
– Intake Manifold Temperature Sensor

– Engine Coolant Temperature Sensor

– Fuel Temperature Sensor

– Inlet Air Temperature Sensor

– Crankcase Pressure Sensor

– Ambient Air Temperature Sensor

– DEF tank level sensor

12

https://www.thermometricscorp.com/2-wire-rtd.html#:%7E:text=The%20simplest%20resistance%20thermometer%20configuration,leading%20to%20errors%20of%20measurement.

Three Wire Sensors

MD5.

SHA-1,

SHA-2,

etc.

• Produce steady voltage from 0 to 5 /12 VDC

• Voltage dividers produce a voltage signal based the wiper position.

• Pressure sensors.

Analog Outputs

13

Pulse Width Modulated Signals

MD5.

SHA-1,

SHA-2,

etc.

• Accelerator Pedal Position

• Throttle position sensor

• Wheel speed sensor

• Electronic Dosing Valve

14

Image Source: J. L. Córcega, “Design of a forensically neurtral electronic environment for heavy
vehicleevent data recorders,” Master’s thesis, University of Tulsa, 2015

CAN based Sensors/Modules

MD5.

SHA-1,

SHA-2,

etc.

• Depending on the engine configuration, some actuators
are controlled over CAN.

• However, neither engine CAN nor any standard CAN
network (SAE J1939) are used to actuate these sensors.
Instead, modules such as the Aftertreatment control
module (ACM) or Motor Control Module (MCM) have a
dedicated CAN lines to control these sensors.

15

Agenda
• Introduction & Motivation

• Background and Related work

• System Design

• Hardware Design

• Software Design

• Securing Cloud and external communication

• Conclusion and Future work

16

System Design

ISO/SAE21434

17

System Design

MD5.

SHA-1,

SHA-2,

etc.

Requirements

• Simulate Sensors and actuators to create a fault free environment
– Emulate resistive sensors

– Generate analog voltages (0.25 - 4.75V)

– Generate PWM signals

– Simulate CAN based modules/sensors

• Operate device remotely.

• Provide feedback about the state of the device to users.

• User Interface

18

System Design

MD5.

SHA-1,

SHA-2,

etc.

Function Allocation

Functions Hardware Software

Generate PWM FlexPWM Set Duty cycle and Frequency

Control Potentiometers MCP41HV51 - SPI Set Wiper Position and
Terminal Connection

Communicate over
CAN bus

FlexCAN Read and Write CAN messages

Monitor Voltage PAC1934 – I2C Read Voltage

API Ethernet - SPI Request Handler

Power the ECU Voltage and
reverse polarity protection

User Interface API

AWS IoT
connection handler

ATECC608 – I2C BearSSL

19

Agenda
• Introduction & Motivation

• Background and Related work

• System Design

• Hardware Design

• Software Design

• Securing Cloud and external communication

• Conclusion and Future work

20

Hardware Design

21

Hardware Design

MD5.

SHA-1,

SHA-2,

etc.

Requirements

• Generate PWM signals

• Simulate resistance to ground (two wire sensors)

• Generate analog voltages (three wire sensors)

• Ethernet Interface

• Measure Voltage for feedback

• Hardware based secure key storage

22

Hardware Design
Approach

• Teensy 4.0 Development Board
– NXP iMXRT1062
– 600 MHz Cortex-M7
– 3 - SPI
– 3 – I2C
– 3 – CAN (1 FD)
– 2Mb Flash, 1024K RAM

23

Hardware Design
Emulating Resistive sensors/ Generating Analog Outputs

• Microchip MCP41HV51 Digital Potentiometer
• 8-bit wiper position resolution

• Terminal Connections register (TCON)

24

Hardware Design
Emulating Resistive sensors/ Generating Analog Outputs

25

Hardware Design
Generating PWM Signals

• Utilizing Hardware based PWM modules
– Counter
– Comparator

• PWM signals generated from Teensy are 3.3v
and needs to be amplifies to 5V.

• Limitation with setting frequency.
– Each PWM module drives up to 3 PWM

outputs.
– One Counter/Timer linked to a PWM

module.

26

Hardware Design
Generating PWM Signals with varying frequency

27

Hardware Design
Generating PWM Signals with varying duty cycle

28

Hardware Design
Read/Write CAN messages

• Teensy 4.0 has 3 in built CAN controllers

• Additional CAN transceivers is added to
interface with the CAN bus.

29

Hardware Design
Microchip PAC1934

• PAC1934 is a four-channel power/energy monitor.

• 16-bit resolution

• 1 to 32 volts support.

• Up to 1024 samples per second

• I2C interface

• Arduino Library
– https://github.com/SystemsCyber/Microchip_PAC193

x.git

30

Hardware Design
Wiz850io Ethernet module

• Plugin Network Module

• Powered by W5500 chip
– Hardwired TCP/IP embedded ethernet controller

• High speed SPI interface

31

Hardware Design

• Cryptographic co-processor with secure hardware-based key
storage

• 16 key storage slots with 256-bit key size

• NIST standard P256 elliptic curve support (ECC)

• True Random Number Generator (TRNG)

• I2C or SWI interface

• ArduinoECCX08

• Teensy Compatibility (Github Issue)

Microchip ATECC608B

32

https://github.com/arduino-libraries/ArduinoECCX08.git

• Designed using Altium Designer

• Teensy 4.0 was integrated into a printed
circuit board (PCB) along with other
peripherals such as :

– MCP41HV51 digital potentiometer
– Microchip PAC1934
– Voltage regulator and power

protection
– Microchip ATECC608B HSM
– Op-amp for PWM outputs

Hardware Design
PCB Design

Agenda
• Introduction & Motivation

• Background and Related work

• System Design

• Hardware Design

• Software Design

• Securing Cloud and external communication

• Conclusion and Future work

34

Software Design

35

Software Design

MD5.

SHA-1,

SHA-2,

etc.

Hardware Abstraction Layer

Pots - SPI

Set Wiper Register

Set TCON Register

PWM

Set Frequency

Set Duty Cycle

PAC – I2C

Read Voltage

CAN

Read Messages

Write Messages

36

Software Design

MD5.

SHA-1,

SHA-2,

etc.

HTTP API Design

• API endpoint for the different peripherals
– /pwm

– /pots

– /voltage

– /can

– /cangen

37

teensy_size: Memory Usage on Teensy 4.0:
teensy_size: FLASH: code:206032, data:265944, headers:8276 free for files:1551364
teensy_size: RAM1: variables:82624, code:204104, padding:25272 free for local variables:212288
teensy_size: RAM2: variables:12384 free for malloc/new:511904

Software Design
Graphical User Interface

• Web based GUI

• React framework

• Served directly from Teensy 4.0

• aWOT Arduino library

38

https://awot.net/

Agenda
• Introduction & Motivation

• Background and Related work

• System Design

• Hardware Design

• Software Design

• Securing Cloud and external communication

• Conclusion and Future work

39

Securing the Cloud Communication

40

X.509 Certificates
• Digital certificates are the most common approach used to distribute public keys.

– User’s public key along with other identification information of a user is cryptographically signed
by the third party using the third party’s secret signature key

– certificate binds this user identity to its public key
– Clients must have the public key of the root CA in order to verify the public key

• BearSSL is used to implement TLS communication on the Mini-SSS3 with AWS IoT

41

Image source: Understanding the AWS IoT Security Model | The Internet of Things on AWS – Official Blog (amazon.com)

https://aws.amazon.com/blogs/iot/understanding-the-aws-iot-security-model/

Offloading ECDSA sign/verify to ATECC608

P. Kietzmann, L. Boeckmann, L. Lanzieri, T. C. Schmidt, and M. Wählisch, “A Performance Study of Crypto-Hardware in the Low-
end IoT,” 058, 2021. Accessed: Dec. 10, 2021. [Online]. Available: http://eprint.iacr.org/2021/058

42

http://eprint.iacr.org/2021/058

Provisioning the ATECC608B

• Generate a private key Internally on the ATECC608B and lock
the device

• Generate a Certificate Signing Request (CSR) of the publickey
along with other user information from the private key locked in
ATECC608B

• Provide CSR to a Certificate Authority (AWS IoT)

• Download the signed X.509 Certificate to the device

Private key never leaves the ATECC608 during
the provisioning process

43

Image source: Understanding the AWS IoT Security Model | The Internet of Things on AWS – Official Blog (amazon.com)

https://aws.amazon.com/blogs/iot/understanding-the-aws-iot-security-model/

Communication with AWS IoT

• MQTT is a lightweight, publish-
subscribe network protocol that
transports messages between devices

• Changes on the device and the
webpage and are relayed onto a
common MQTT Topic

Image source: Understanding the AWS IoT Security Model | The Internet of Things on AWS – Official Blog (amazon.com)

44

https://aws.amazon.com/blogs/iot/understanding-the-aws-iot-security-model/

Demonstration

Image source: Understanding the AWS IoT Security Model | The Internet of Things on AWS – Official Blog (amazon.com)

45

https://aws.amazon.com/blogs/iot/understanding-the-aws-iot-security-model/

Contribution and Conclusion

• Hardware design of the Mini-SSS3

• Contributed to open-source Arduino libraries for PAC1934 and ArduinoECCX08 to
make them compatible with Teensy 4.0

• Designed a Web-based GUI which is served directly from the Mini-SSS3 device.

• Implemented a Cloud based backend and front end for Interacting with the device
remotely.

46

Limitations and Future Work

• Utilize ATECC608B-TNGTLS
– Pre provisioned variant of ATECC608B

– Signed Thumbprint certificate pre provisioned on the device
which can be used to authenticate with AWS IoT, Azure and
Google Cloud.

– Eliminate the provisioning steps.

• Transition the HTTP API to HTTPS

• Serve HTTPS web-pages directly from the device.

• Implement Authentication mechanism on the device.

47

Thank you

References

[1] “Overview of the 2018 Crash Investigation Sampling System,” NHTSA. Overview of the 2018 Crash Investigation
Sampling System (dot.gov)

[2] P. Kietzmann, L. Boeckmann, L. Lanzieri, T. C. Schmidt, and M. Wählisch, “A Performance Study of Crypto-Hardware in
the Low-end IoT,” 058, 2021. Accessed: Dec. 10, 2021. [Online]. Available: http://eprint.iacr.org/2021/058

[3] S. A. B. van Nooten and J. R. Hrycay, “The Application and Reliability of Commercial Vehicle Event Data Recorders for
Accident Investigation and Analysis,” SAE International, Warrendale, PA, SAE Technical Paper 2005-01–1177, Apr. 2005.
doi: 10.4271/2005-01-1177.

[4] D. Plant, T. Austin, and B. Smith, “Data Extraction Methods and their Effects on the Retention of Event Data
Contained in the Electronic Control Modules of Detroit Diesel and Mercedes- Benz Engines,” SAE Int. J. Passeng. Cars –
Mech. Syst., vol. 4, no. 1, pp. 636–647, 2011.

49

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812971
http://eprint.iacr.org/2021/058
https://doi.org/10.4271/2005-01-1177

Appendix

• PWM Submodule on iMXRT1062

50

Client Hello

51

FLEXCAN Module

• Version 2.0B
– Standard data and remote frames

– Extended data and remote frames

– Zero to eight bytes data length

– Programmable bit rate up to 1 Mb/sec

– Content-related addressing

• Flexible Mailboxes of eight bytes data length

• Each Mailbox is configurable as Rx or Tx, all supporting standard and extended messages •

• Individual Rx Mask Registers per Mailbox

• Full featured Rx FIFO with storage capacity for 6 frames and internal pointer handling

52

Basics of Cryptography

Cryptographic
Algorithms

Symmetric
Encryption

Asymmetric
Encryption

Unkeyed
Algorithms

AES,
Salsa20,

ChaCha20,
etc.

RSA

Elliptic curve cryptography

Diffie-Helman key exchange

etc.

MD5.

SHA-1,

SHA-2,

etc.

53

Basics of Cryptography

Cryptographic
Algorithms

Symmetric
Encryption

Asymmetric
Encryption

Unkeyed
Algorithms

AES,
Salsa20,

ChaCha20,
etc.

RSA

Elliptic curve cryptography

Diffie-Helman key exchange

etc.

MD5.

SHA-1,

SHA-2,

etc.

54

Symmetric Encryption

Message
(Plaintext)

Key

Encryption
E(k,m) = c

m k

Decryption
D(k,c) = m

k

Secured Channel

Unsecured Channel

c

Message

m

Alice Bob

55

Symmetric Encryption
Advantages Disadvantages

• Simple

• Fast

• Less computing resources

• Secure channel for secret key exchange

• Multiple keys for multiple clients

• Lacks message authenticity.

56

Basics of Cryptography

Cryptographic
Algorithms

Symmetric
Encryption

Asymmetric
Encryption

Unkeyed
Algorithms

AES,
Salsa20,

ChaCha20,
etc.

RSA

Elliptic curve cryptography

Diffie-Helman key exchange

etc.

MD5.

SHA-1,

SHA-2,

etc.

57

Asymmetric Encryption

Message
(Plaintext)

Public
Key

Encryption
E(Pb,m) = c

m Pb

Decryption
D(k,c) = m

Pb

Unsecured Channel

c

Private
Key

Alice Bob

Public
Key

Pb Kb

Unsecured Channel

Message
(Plaintext)

58

Asymmetric Algorithms
Advantages Disadvantages

• Confidentiality/access control

• Message authentication

• Tamper detection

• Public keys should/must be authenticated

• Slower than symmetric encryption

• Require more computing resources

59

Elliptic Curve Cryptography
• Public key cryptography is based on special mathematical

functions that are relatively easy to calculate but very difficult
to invert.

• According to NIST SP 800-57, a 224-bit ECC key used for
digital signatures is equivalent in strength to RSA-2048.

• Advantages
– Better Security strength efficiency compared to RSA

– Mathematics is more complex than RSA

– Smaller Key size

• Disadvantages
– Complex Implementations

Symmetric
Key Size

RSA ECC

80 1024 160
112 2048 224
128 3072 256
192 7680 384

Cryptographic strength com parison

60

Elliptic Curve Digital Signature Algorithm

Message
(Plaintext)

Sign
Sign(k,m) = s

k

Verify
D(Pb,s,m) = mUnsecured Channel

Pb,m,s

Alice Bob

Message
(Plaintext)

Private
Key

Public
Key

Pb

m

61

Transport Layer Security

Supported Cipher Suites

Client Hello

Selected Cipher SuiteValidate Server
Identity with root CA

Server Hello

Signature of Communication record

• BearSSL is an implementation of the SSL/TLS
protocol (RFC 5246) written in C

• SSL/TLS has many defined cipher suites and
extensions. BearSSL implements most of them.

• ArduinoBearSSL

Establish symmetric key

62

https://tools.ietf.org/html/rfc5246

Wireshark Trace

63

ECDSA

64

ECDSA Sign
#include <ArduinoECCX08.h>

byte signature[64];

byte message[32] = {

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,

0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,

0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F

};

byte publicKey[64];
void setup()

{

ECCX08.begin();
ECCX08.ecSign(0, message, signature);

ECCX08.generatePublicKey(0, publicKey);

printMessage();

printPublicKey();

printSignature();

}

65

ECDSA verify
#include <ArduinoECCX08.h>

byte message[32] = {

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F};

byte publicKey[64] = {0x98, 0x59, 0xFE, 0x69, 0x8D, 0x69, 0x82, 0x05, 0xEB, 0x3C, 0xCA, 0x40,
0x09, 0xC5, 0x4D, 0xA5, 0x01, 0xC1, 0xF9, 0x1E, 0xF5, 0x0B, 0xD3, 0x37, 0x33, 0x8F, 0xE5, 0xCE,
0xE7, 0x24, 0x83, 0xC6, 0x82, 0x93, 0x0A, 0x9D, 0x13, 0xAE, 0x27, 0x3B, 0xB9, 0x96, 0x3E, 0xD7,
0x82, 0x0F, 0xD7, 0xE7, 0xFD, 0x40, 0x9E, 0x40, 0x75, 0x6B, 0x15, 0xF2, 0x28, 0x35, 0x5C, 0x5F,
0x4D, 0x84, 0x51, 0x2D };

byte signature[64] = {0x8E, 0xB2, 0x5C, 0xE7, 0x7A, 0x1A, 0x2B, 0x87, 0xF7, 0x37, 0x30, 0x6A,
0x2F, 0xA9, 0xE5, 0x70, 0x14, 0x52, 0x7B, 0x0D, 0x36, 0xED, 0xD7, 0xB0, 0x7B, 0xA4, 0x60, 0x7F,
0xF0, 0xB9, 0xEF, 0x30, 0x8B, 0x9D, 0x0C, 0x69, 0x40, 0x10, 0x8D, 0xC3, 0x5B, 0x9E, 0x83, 0x07,
0x2F, 0x55, 0x65, 0xF0, 0x83, 0x82, 0x95, 0xBB, 0x95, 0x03, 0x76, 0x31, 0x24, 0x16, 0xED, 0x98,
0x16, 0xB4, 0x9E, 0xC3 };

void setup(){

ECCX08.begin(0x35);

if(ECCX08.ecdsaVerify(message, signature, publicKey)) Serial.println("Signature Verified");

else Serial.println("Signature Failed");

}

66

	Slide Number 1
	Agenda
	Introduction
	Motivation
	Agenda
	Background and Related work
	Background and Related work
	Background and Related work
	Background and Related work
	Common Sensors found in a HV
	Two Wire Sensors
	Three Wire Sensors
	Pulse Width Modulated Signals
	CAN based Sensors/Modules
	Agenda
	System Design
	System Design
	System Design
	Agenda
	Hardware Design
	Hardware Design
	Hardware Design
	Hardware Design
	Hardware Design
	Hardware Design
	Hardware Design
	Hardware Design
	Hardware Design
	Hardware Design
	Hardware Design
	Hardware Design
	Hardware Design
	Agenda
	Software Design
	Software Design
	Software Design
	Software Design
	Agenda
	Securing the Cloud Communication
	X.509 Certificates
	Offloading ECDSA sign/verify to ATECC608
	Provisioning the ATECC608B
	Communication with AWS IoT
	Demonstration
	Contribution and Conclusion
	Limitations and Future Work
	Slide Number 48
	References
	Appendix
	Client Hello
	FLEXCAN Module
	Basics of Cryptography
	Basics of Cryptography
	Symmetric Encryption
	Symmetric Encryption
	Basics of Cryptography
	Asymmetric Encryption
	Asymmetric Algorithms
	Elliptic Curve Cryptography
	Elliptic Curve Digital Signature Algorithm
	Transport Layer Security
	Wireshark Trace
	ECDSA
	ECDSA Sign
	ECDSA verify

